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Abstract

We present an approach to characterizing complex media, based on the use of new families
of orthonormal electromagnetic beams. Each familly consists of orthonormal exact solutions
of Maxwell's equations, which differ fundamentally from the well-known approximate solu-
tions - the Hermite-Gaussian and Laguerre-Gaussian beams. A promising type of such
orthonormal beams-beams defined by the spherical harmonics-is discussed. The proposed
approach makes it possible to use beams focused into a small spot on the sample surface.

1. -Introduction

The free-space techniques for characterizing complex media are based on the use of the plane-
wave approximation of the incident beam. Computer modelling [1, 2, 3] of the free-space tech-
niques [1, 2, 3, 4], based on the covariant impedance methods, has shown that these techniques
make it possible to extract all material parameters of an anisotropic, chiral, or general bian-
isotropic medium, provided that the reflection and transmission coefficients of planar samples
under normal and oblique incidence of plane harmonic waves are measured with sufficient ac-
curacy. However, this requires a rather complicated measurement setup, and in many cases the
plane-wave approximation of beams in use proves to be inadequate, especially for thick samples.

The technique presented in Refs. [5, 6] makes it possible to compose a set of orthonormal

beams in a complex medium or free space, normalized to the energy flux through a given plane.
They can be used to generalize the free-space techniques [1, 2, 3, 4] for characterizing complex
media, developed for the case of plane incident waves, to the case of incident beams. A promising
type of such orthonormal beams-beams defined by the spherical harmonics-is introduced in
Ref. [7]. In this paper, we discuss the properties and applications of these beams in more detail.

2. Beams Defined by the Spherical Harmonics

In this paper, we consider electromagnetic fields in free space of the form [7]

Wd (r, t) = e erk(O)Yf(O, )(,)W(O, o) sin OdO. (1)

They are defined by the spherical harmonics

Ytm (0,) Njm',nImI(cos O)eim"ý, (2)

where /(21 + 1( m)
N1m VIm! (3)
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and P1
m (cos0) and j1 (kr) are the spherical Legendre and Bessel functions. The spherical har-

monics Yjm (0, ýp) satisfy the relations

(YrmIyzI') I 2Y• dp j Yrm* (9, o)YI' (0, o) sin OdO

= 61w 1mm. (4)

Hence, for the beams under consideration (see also Ref. [8]), B, is a unit sphere (B_ = S 2), the
beam manifold B C B, is its zone with 0 E [01, 021 and ýp E [0, 27r]; and dB = sin OdOdp.

To compose electromagnetic beams in free space, it is convinient to set W = col(E, B) =

col(E, H). For a time-harmonic field, the component S 3 = e3 - S of the time average Poynting
vector S can be written as

C

S3 = 1-•e 3 - (E* x H + E x H*) = WtQW, (5)

where

Q 167-( e 2 (gel - el 9 e 2  0) (6)

and 9 is the tensor product. Therefore, for the electromagnetic beams Wj, the condition
(Wj IQIWjs) = NQ is in fact the normalization to the beam energy flux NQ through the plane
a0 normal to q = e 3 :

(W IQIWl) =L S 3 doo = NQ. (7)

Each family of the fields under consideration is described by functions which have integral
expansions in plane waves with wave normals lying in the same given solid angle Q. In particular,
one can set the angular spectrum of plane waves by

= k(9, -- k[0'(0 W), (0, P)] (8)

where
k = k/k = sin 0'(e1 cos o' + e2 sin W') + e3 COS 0'. (9)

In this paper, we restrict our consideration to beams with

O' = KoO, V' = ro, (10)

where no is some real parameter; 0 < no <_ 1. Correspondingly, to set the beam base, it is
convinient to use the radial, the meridional, and the azimuthal basis vectors

er(0', ýp) = sin 0'(el cos ýp + e 2 sin W) + e 3 COS 09, (11)

e0 , (0', ýp) = cos 0'(eI cos o + e2 sin ýp) - e3 sin 0', (12)

e.o(ýo) = -el sin , + e 2 cos. (13)

Let us set two amplitude functions by

W - B E - eo' (14)

W( (E) e ) (15)W(,•o --_ B = -e0,

Since the beams with the amplitude function W [Eq. (14)] are composed from plane waves with
the meridional orientation of E and the azimuthal orientation of B, they will be referred to as
EM beams or BA beams. Similarly, the amplitude function W [Eq. (15)] results in EA beams
or BM beams. The field vectors of EM and EA beams are related by the duality transformation
E -+ B, B -+ -E.
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3. Orthonormal Beams

Let us first consider orthonormal beams with the angular spectrum Ql = 27r, i.e., the superpo-

sitions of eigenwaves propagating into a given halfspace. To this end, let us set 01 = 0 and

02 = ir/2 in Eq. (1), and no = 1 in Eq. (10). In this case, the amplitude functions W(9, V)

for EM and EA beams are given by Eqs. (14) and (15) with 0' = 0, and the orthonormalizing
function v = v(0, ýo) reduces to a constant [5]. The beam manifold B = SN is the northern

hemisphere S2 of the unit sphere S 2. This results in two different sets of orthonormal beams
defined by the spherical harmonics yj1 with even and odd j, respectively. However, it is of
value to have a complete system of orthonormal beams W5 defined by the whole set of spherical

harmonics yj8, for which (W I QWI:j) = 0, if at least one of the three conditions is met: j'54j,
S'ts, or the beams have the alternative polarization states (EM and EA beams).

To this end, let us set the beam base of time-harmonic electromagnetic EM beams Wj [Eq.
(1)] by Eqs. (9) and (10)-(15) with 01 = 0, 02 = 7r, and n0o < 1/2. In this case, the beam
manifold is the unit sphere, (B = S 2), the angular spectrum Ql < 27r, and the orthonormalizing
function has the form

2I•2rKogQ sin(n00)

V()= csin (16)

These EM beams also can be expanded into a series as described in Ref. [5]. As before, EM and
EA beams are related by the duality transformation.

The smaller is no, the smaller is the angular spectrum Q2, i.e., the more collimated is a beam.
Conversely, if no = 1/2, i.e., Q = 27r, the beam becomes highly localized and has an energy
distribution in the core region similar to the beams presented in Refs. [5, 6, 7]. When s$0 and
K = 1/2, or n ;1/2, these beams resemble electromagnetic tornadoes with spiral energy fluxes
and pronounced core regions.

The general time-harmonic beam with two-dimensional beam manifold B can be written as

W(r, t) = e-iwt fB eir'k(b)v(b)u(b)W(b)dB, (17)

where u : B -+ C' is a complex scalar function on B. Let (us) be an orthonormal base of
complex functions on B. Then, the function u can be expanded into a series as

u(b) = Ecnun(b), (18)
n

where ca = (urn Iu). By applying the approach described in Refs. [5, 8], we obtain an expansion
of W (17) into a series of orthonormal beams Wn as

W = cawn. (19)

It is essential that the coefficients ca can be extracted from the beam W as follows:

1W

Cn = V-(WnIQIW). (20)

What is even more important they are measurable values provided that there exists a source
of orthonormal beams Wn. As it is shown in Refs. [5, 7], 1 = (WIQIW) is the energy flux
through the plane o0 in the case of time-harmonic beams with two-dimensional manifold B.
Each of the complex coefficients cn of the beam W (19) can be calculated from the results of
three measurements [5, 7].
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4. Conclusion

The presented approach to characterizing complex media is based on the use of new families
of orthonormal electromagnetic beams. Each familly consists of orthonormal exact solutions
of Maxwell's equations, which differ fundamentally from the well-known approximate solutions
-the Hermite-Gaussian and Laguerre-Gaussian beams. By using these solutions, the results
obtained in Refs. [1, 2, 3, 4] for the case of plane incident waves are generalized to the case
of time-harmonic beams obliquely incident onto a general bianisotropic slab. To this end, the
fields of incident, reflected, and transmitted waves are expanded into series of orthonormal vector
functions. The obtained solutions make it possible to calculate the complex scalar coefficients
of these series. It is shown that these coefficients are measurable values, and the corresponding
measurement scheme is suggested. Assuming that they are given or measured, it is possible
to reconstruct the reflection and transmission coefficients of the slab for partial incident plane
waves and then, using the techniques presented in Refs. [1, 2, 3, 4], to extract the whole set
of material parameters. One can use various families of orthonormal beams, in particular, the
family of beams defined by the spherical harmonics. Results of numerical analysis of the latter
and peculiarities of its possible application to characterizing various complex media will be
reported orally.

The proposed approach makes it possible to use beams with wide angular spectrum, focused
into a small spot on the sample surface. Usage of well focused beams eliminates the need to
work in an anechoic enviroment.

References

[1] G. N. Borzdov, "Free space measurement techniques for characterizing anisotropic, chiral and bian-
isotropic media," in Proc. Bianisotropics'98, Braunschweig, Germany, pp. 261-264, June 1998.

[2] G. N. Borzdov, "An optimization of free space measurement schemes for characterizing complex
media," in Proc. Bianisotropics'98, Braunschweig, Germany, pp. 301-304, June 1998.

[3] G. N. Borzdov, "On the measurement of material parameters of a general bianisotropic medium,"
in Proc. PIERS'98, Nantes, France, p. 516, July 1998.

[4] G. N. Borzdov, "Inverse problem of reflection and transmission for a bianisotropic medium," in
Advances in Complex Electromagnetic Materials (A. Priou et al., eds). Dordrecht: Kluwer, pp. 71-
84, 1997.

[5] G. N. Borzdov, "Plane-wave superpositions defined by orthonormal scalar functions on two- and
three-dimensional manifolds," Phys. Rev. E, vol.61, no. 4, pp. 4462-4478, April 2000.

[6] G. N. Borzdov, "New types of electromagnetic beams in complex media and free space," in Ab-
stracts of Millennium Conference on Antennas & Propagation AP2000, Davos, Switzerland, Vol. II
- Propagation, p. 228, April 2000.

[7] G. N. Borzdov, "Electromagnetic beams defined by the spherical harmonics with applications to
characterizing complex media," in Abstracts of Millennium Conference on Antennas & Propagation
AP2000, Davos, Switzerland, ol. II - Propagation, p. 229, April 2000.

[8] G. N. Borzdov, "New types of orthonormal electromagnetic beams in complex media and free space,"
in Proc. Bianisotropics 2000, Lisbon, Portugal, pp. 55-58, September 2000..


